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Two-frequency mutual coherence function and pulse propagation in random media
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In this work an analysis of transient wave propagation in forward scattering random media is presented. The
analysis is based on evaluation of the two-frequency mutual coherence function, which is an important quantity
in itself since it provides a measure of the coherence bandwidth. The coherence function is calculated by using
the path integral technique; specifically, by resorting to a cumulant expansion of the path integral. In contrast
to the formulas available in the literature, the solution obtained is not limited by the strength of disorder and
applies equally well to both dispersive and nondispersive media, with arbitrary spectra of inhomogeneities. For
the regime of weak scatterin(@r relatively short propagation distangeke first cumulant gives an excellent
approximation coinciding with the results obtained earlier in a particular case of the Kolmogorov turbulence by
solving the corresponding differential equation numerically. In the regime of strong scatlerigglistances
which to our knowledge has not been covered previously, our solution demonstrates a different type of scaling
dependence. It is shown that, even for power spectra with fractal behavior in a wide range of spatial frequen-
cies, the coherence function is very sensitive to fine details of the spectrum at both small and large spatial
scales. Using the cumulant expansion, the temporal moments of the pulsed wave propagating in a random
medium are also considered. It is found that the temporal moments of the pulse are determined exactly by
accounting for a corresponding number of the cumulants. In particular, the average time delay of the pulse is
determined by the first cumulant, and the pulse width is obtained by accounting for the first two cumulants.
Although the consideration of the problem is based on the model of a continuous medium, the results are also
applicable to wave propagation in media containing discrete particles scattering predominantly in the forward
direction.
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I. INTRODUCTION temporal and spatial amplitude variatiof®. However, the
ray technique is limited when studying fine dispersion and

In this work we study a two-frequency coherence functiondiffraction structures of the wave field, especially in random
and temporal evolution of transiefrulsed waves propagat- media where many multiple-scattered waves come to the ob-
ing along directed paths in random media. Along with theservation point. In such a case, we should resort to a full
generic significance of the subject in the physics of disorstochastic wave equation describing the wave field varying
dered systems where the propagation of both quantum méa both space and time. Another option is to solve the re-
chanical and classical wave packets is of intefese, e.g., duced form of the wave equation, written for the time-
Refs.[1-3]), there is a variety of applications dealing with harmonic field, and to return to the time-dependent field by
ultrawideband signals transmitted in a complex environmentusing an appropriate Fourier transformation. The latter
In particular, high data rate communication systems at radianethod is adopted here to study the transient wave propaga-
and optical frequencies may be influenced by pulse spreadion in random media. It is worth noting that this indirect
ing due to the scattering by turbulent inhomogeneities angbrocedure is the only possibility in many situations dealing
hydrometeors in the troposphere, and by electronic concemwith dispersive media, for which the wave equation in the
tration fluctuations in the ionosphere. Moreover, in the lattetime domain is unknown, and the properties of the medium
case, the random scattering is superimposed on the backse described by a dispersion relation presented in the fre-
ground effect of dispersive spreading. In contrast to the pulsquency domain. Within the framework of this formalism, the
spreading in a homogeneous temporally dispersive mediuntomplete information about transient propagation requires a
which may be compensated for in the receiver, the sameolution for the statistical moments of the wave field at dif-
effect caused by spatial dispersion of random media leads tierent frequencies and at different positi¢is In particular,
an irreversible degradation of the transmitted signal. Otheto evaluate the average pulse shape one has to know the
applications, also dealing with randomly scattered shortwo-frequency mutual coherence function, which is also an
pulses, include radars and other remote sensing schemes, umportant quantity in itself since it provides a measure of the
derwater acoustics, and the interpretation of signals emittedoherence bandwidtH].
by extraterrestrial radio sources such as pulgh,5). As is known, the propagation of directed waves can be

The basic phenomena of the transient propagation proceskescribed with good accuracy by a parabolic-type wave
can be studied in the framework of a space-time ray apequation for the complex amplitude. In the Markov approxi-
proach according to which the wave process is considered imation, i.e., when the inhomogeneities of the medium are
terms of wave packets moving along complex space-timsupposed to be correlated along the direction of wave
rays, permitting the analysis of wave fields with exponentialpropagation, the two-frequency mutual coherence function
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also satisfies an equation of the same type that was obtainettained are also applicable to wave propagation in media
in [8]. Some attempts were made to analyze this equation bgontaining discrete particles that scatter predominantly in the
using either a rather cumbersome eigenfunction expansioierward direction. This possibility arises from the well-
developed for a power-lawfracta) medium[9] or a two-  known fact that, under certain conditions, the equation for
scale procedure which, in principle, is capable of describinghe mutual coherence function can be reshaped into a two-
random media with any given statistid40]. The latter frequency radiative transfer equatifh8].

method, however, leads to a multiple integral of a highly It should be mentioned that this problem can be consid-

oscillating function which requires considerable numerical€®d €ven in a wider physical framework including other

effort to be applied to complete the analysis of the promem_formulations, which are similar in form. In fact, the parabolic
ave equation used to model the propagation of directed

In both cases the control of the accuracy is an additional/aV€. oo . . s
difficulty. classical waves coincides with the nonstationary Sdiiger

equation that describes the motion of a quantum particle in a

The only known analytic solution of the equation for the
y Y a gdandom time-dependent potentigl5-18. The analog of

coherence function is based on the approximation of the ) : .
transverse structure function by a quadratic fof. In the time for classical waves is the range coordinate, and the ran-

framework of the path integral approach adopted in oudom p_oter_1tia| corresponds to 'Fhe s_patial _fluctuatic_)ns of the
work, this result is not surprising because in this case there {&fractive index. Moreover, the imaginary time version of the
a soluble quadratic type Lagrangian, and the path integrationcr@inger equation describes the problem of directed poly-
can be performed exact[iL2]. The quadratic approximation, Mers in a random mediutii9]. When, in addition, the po-
however, corresponds to accounting for random tilts of thé€ntial is also imaginary, then the model is relevant to guan-
wave front, while the small-scale perturbations causing th&Um tunneling of ‘a strongly localized electron under a
pulse spread are completely neglected. In this case, tH@ndom barrief20]. .

broadening of the ensemble-averaged pulse is due entirely to 1€ outline of the paper is as follows. In Sec. II, the
the fluctuations in arrival time of the pulse, which remainsdeneral relation between the mean shape of the transient

unperturbed in each particular realizatigts]. Obviously, ~Wave and the two-frequency mutual coherence function is

such a model cannot be adequate for the description of si€sented. Then, in Sec. lll, the path integral approach

nals transmitted through random media, and a more acceptdopted in this work and the cumulant technique used for the
able technique for tackling the problem should be developedfValuation of the path integrals are described. In Sec. 1V, the
Although a quarter of a century has passed from the time thBath integral technique is applied to the calculation of the
solution based on a quadratic approximation was obtainedoherence function for a dispersive medium with a homoge-
no serious progress in this area seems to have been achiev8§0US background. In Sec. V, the results obtained are ana-
An important exception that must be mentione@id] in lyzed and exemplified by considering the particular case of a

which the temporal evolution of pulsed signals was studiegdeneralized Kolmogorov turl_au_lence. In Sec. VI the relations
and the problem of finding the mutual coherence functiorbetwee” temporal characteristics of the pulsed waves and the

itself was avoided. Indeed, it was realized that for calculatiofVO-frequency mutual coherence function are introduced.
of temporal moments of the pulésuch as mean arrival time FOF the model of a narrowband signal propagating in a non-

and pulse widthit is sufficient to evaluate the derivatives of diSPersive medium, both the mean arrival time and the pulse

the coherence function for zero frequency separation. Obyiidth are calculated. The final section contains a summary

ously, the description of transient signals by a number oft"d Some concluding remarks.

temporal moments is sufficient only for pulses of simple

shapes, like, for example, quasimonochromatic wave packets

with Gaussian envelopes. Propagation of transients with Il. TEMPORAL EVOLUTION OF TRANSIENT WAVES

complex spectral content, e.g., frequency modulated or ultra- T study the temporal evolution of transient waves in ran-
wideband, especially in dispersive media, may cause formajom media, we consider the time-dependent fig{d, z,t),

tion of signals of very intricate form, and even disintegrationyyhich can be presented as a superposition of time-harmonic
of the initial signal into pulse trains. In this situation we wayvesU,(r,z) satisfying the reduced Helmholtz equation.
should resort to a full description based on the mutual coheryere thez axis is chosen along the direction of wave propa-
ence function, not its derivatives. Moreover, the coherencgation, and is the coordinate in the transverse plane. In the

function itself is needed in many cases since it is an easilyaraxjal approximation the field (r,z) is presented as
measurable quantity and may be used in inverse problems

aimed at characterizing the properties of the scattering me-
dium. U,(r,z)=exdik(w)z]u,(r,z), (2.1

In this paper we show that the two-frequency mutual co-
herence function can be evaluated with good accuracy by
using a path integral technique supplemented by the Markowhere the wave numbé«(w) describes the spectral proper-
approximation, for any type of fluctuating mediufimclud-  ties of the unperturbed background medium, and the com-
ing both dispersive and nondispersive me¢diad for any  plex amplitudeu,(r,z) is governed by the standard para-
type of the disordefsingle correlation scale or fractal me- bolic wave equation containing a random perturbation of the
dia), as well as for any strength of randomness. Although thescattering potential1]. Thus, the time-dependent field has
model of a continuous medium is considered here, the resulthe form
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1 (= different realizationg13]. However, the latter effect is sig-
P(r,z,t)= ﬁf dwexd —iot+ik(w)z] nificant under the conditions of extremely weak scattering
o (in the regime of weak intensity fluctuationsand is de-
XU, (r,2)S(w), (2.2)  scribed mainly by a separable factor which will be deliber-

ately ignored in our analysis.
whereS(w) is the spectrum of the excited pulse.
When dealing with wave propagation in random media,

we are interested in finding the statistical moments of the lll. PATH INTEGRAL APPROACH

signal intensity, We start with the parabolic equation for the Green’s func-
)= zH?y, n=12,... (@3 o™

(the angular brackets denote ensemble averagingarticu- 2ik(w)d,9,+ VZg,

lar, the first f=1) intensity moment characterizing a mean 0

shape of the pulse is of major inter¢&i. Using Eq.(2.2), +k*(w)E(r,z,0)g,(r,2|ro,z9)=0, (3.13

we obtain for the mean intensity
supplemented by the initial condition

1 (= * :
(I(r,z,t))=mﬁ dwf_ dQ exp( —iQt)

91, Z0/70,20)= 8(r—rg). (3.1b
XO(z,0,0)I'(r,2,0,Q), (2.9
It is assumed that the fluctuating paramefggrmittivity, or
where scattering potentialg(r,z,w) is a Gaussian random field
; ; with zero mean value{é(r,z,w))=0, i.e., the medium is
*(z,0,0)=exiiik(w+Q/2)z= k(0= Q/2)7] characterized by a hoeéégenegas background.
XS(w+Q/2)S* (w—Q/2) (2.5 The parabolic equatioi3.1) coincides with the nonsta-

tionary Schrdinger equation that describes the motion of a
is the bilinear spectrum of the transient plane wave propaguantum particle in a random time-dependent potential. Us-
gating in a homogeneous medium and measured at a distanggy this analogy, the solution of the equation can be pre-
z from the source, and the correlator sented in the Feynman path integral form:

F(r,z,a),Q):<Uw+9/2(r,Z)U:},Q/2(r,Z)> (26) r(@2)=r

is the mutual two-frequency coherence function. According 9u(r2ro0.20) = Jr(
to Eq.(2.4), the mean shape of a wave packet is determined
by two factors. The first, the bilinear spectrub(z, w,(), ~
accounts for the distortion of a transient plane wave propa- + e[r(g),g,w]}), (32
gating in a dispersive medium. The study of this effect is a
classic topic of textbooks treating the propagation of pulsed , ) . ) )
waves in dispersive media. The second factor, the twoWhere the integratiof Dr(£) in the continuum of possible
frequency mutual coherence functibiir,z,,Q), describes trajectories is mterpr_eted as the sum of contnbuﬂong of arbi-
the scattering of the wave on random inhomogeneities, aff&’y paths over which a wave propagates from pojnat
effect depending essentially on the frequency, due to both th€ “‘moment” z, to pointr atz, and the expression in the
temporal and spatial dispersion of the medium. In randon?Xpone”t may be considered as an “action functional” Whlch
media, the second effect can dominate and provide the maif related to the phase accumulated along the corresponding
contribution to the pulse spread. path[21,22. _ , ,

The important question that should be discussed and has BY changing the “integration variable”
been just mentioned casually in Sec. | is how the shape of the
pulse averaged over the ensembile is related to the shape of ¢
the pulse in an arbitrarily taken realization. In random media f(§)=fo+f dgv(g), (3.3
with only one correlation scalésuch as atmospheric hy- %
drometeorsthere is essentially no difference between these
two values, i.e., the pulse shape obtained by performing enwe turn to the so-called velocity representation, which can
semble averaging coincides with that observed in each pasimplify analytical transformations of the path integfag].
ticular realization. In media with fractal specfsuch as Kol-  In this casev({)=r1({), and in two dimensions the new in-
mogorov turbulencethere are two mechanisms that causetegration variable can be related to some velocity that ex-
broadening of the ensemble-averaged pulse: the pulse mayains the name of this representation. According to Eg.
be spread in time as a result of multiple scattering for eacli3.3), the conditionr(zy) =r, is satisfied automatically. The
realization of the ensemble, and it can also spread in time asecond end restriction for each trajectory can be specified by
a result of averaging over fluctuations in the arrival time ina & function in the integrand. This leads to

k z
Dr(é)exp(i—(z‘")f defi(4)
20

Zo):ro
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z Obviously, the definitior{3.6) satisfies the necessary normal-
r—fo—J d§V(§)) ization condition(1)x=1 (see Ref[25]).
% In order to calculate the value &f defined by Eq(3.5),
pr' k(w) (2 we first choose a trial actioX,, which on the one hand is
Xexpi—— | d¢
2 g
{
rO+J déV(g),g,(x))
20

gw(f12|fo.Zo)=f Dv({)6

VA({) close to the actual actio, and on the other is solvable, i.e.,
the value of the integral

+€

}. (3.4 r= f Dp(Oexp[— X[ ()1} 3.7

Using the path integral representation, in the form of eitheicy, e ohtained analytically. In the second stage, by using
Eq. (3.2 or (3.4), we can write down any statistical moment the definition(3.6), we arrive at the expression
of the wave field and perform an ensemble averaging pro-

vided the statistics of the medium is known. The resulting I'=T(exd — (X=X x, 3.9

expression for alth-order statistical moment of the fie(oh

our case this is the second-order two-frequency mutual can which the expectation value of the exponent may be re-

herence functionhas the generalized form placed formally by the exponent of the series over corre-
sponding cumulantg,, :

r= [ Do -Xip o), 35 -
F=Tiexpd—x), x=2 (3.9
wherep({) is a set ofN Feynman paths, either in a regular n=1 N
coordinate space or in the velocity representation, @)
={v4(0),....vn(9)}, and it is assumed also that the end re-
strictions and the free-space parts of the action functionals wn={(X=X)Mx, n=1,2,..., (3.10
are included inDp(¢). The functionalX[ p(¢{)] in Eq. (3.5 !
reflects the statistics of the medium, and, for instance, in th@y the usual nonlinear relations. A reasonable approximation
case of Gaussian fluctuations contains only a combination afan be obtained by terminating the series at the second order,
correlation (structurg functions of the scattering potential which is allowed if a Gaussian nature is assumed in the sto-
'€(r,z,w). The remaining procedure is then to evaluate thechastic behavior of the perturbatip®5]. Under some condi-
path integral(3.5). tions, the higher cumulants may be neglected, and the series
The term “evaluation” is applied to the path integral in can be approximated by the first cumulant only~ ;.
the sense that the functional, i.e., infinite-dimensional, intE‘Obvious|y, some independent procedure aimed at the verifi-
gral is reduced to some representaticomputational algo- cation of the result based on the first cumulant is desirable.
rithm) containing onIy finite-dimensional, conventional inte- As such a procedure we use the evaluation of tempora| mo-
grals. As is well known, the path integral may be evaluatednents of the pulse and compare the relative contributions of

exactly only in a very limited number of cases where, as ahe first two cumulants to the pulse widteee Sec. VI for
rule, the solution may be obtained by application of othergetails.

methodg 23]. This is true, first of all, for the Gaussian-type

path integrals, i.e., the functional integrals with a quadratic- IV. CALCULATIONS

form Lagrangian. Such integrals may be handled by direct

application of their discretized forms or orthogonal path ex- We consider two waves with angular frequencies= w
pansions. Another way is to use the method of stationary- /2 and w,=w—Q/2. Our aim is to evaluate a two-
phase which leads to exact results for quadratic Lagrangianfequency correlator of the forii2.6), but generalized so that
because the Taylor expansion of the corresponding actiortbe observation points for the two waves are different. Spe-
terminates after its second derivative. However, in practicegifically, we assume that the wave with frequeney (n
especially in the theory of wave propagation in random me=1,2) is radiated by a point source locatedrgt in the
dia, the path integrals are of a non-Gaussian type, and th@anez,=0, and measured at the pomtin the observation
solution can be obtained in an approximate form onlyplanez=L. To calculate the corresponding propagators en-

The cumulantse,, are expressed through the moments

[22,24]. tering the coherence function,
In the present study we will resort to a cumulant tech-
nique [25]. The general idea of the cumulant path integral ['(0,9)=(gu,(r1,2]r01,20)975,(r2.2|r 02, 20)),  (4.1)
evaluation is based on the notion of an expectation value
introduced for an arbitrary real-valued function# p(¢)], we use the velocity representati@4) in which the integra-
tion pathsv,({) are rescaled as
fDp(é“)eXp{—X[p(i)]}U[p(é)] V() — agVvn(0), (4.2
(ULp(O) Dx= .

where the coefficienta,, are given by

f Dp(Z)exp{—X[p({)1}
(3.6) an=ap(»,Q)=Vk(w)/k(w,), 4.3
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andk=k(w) is the wave number corresponding to the “cen- Po=3(Po1+Po2):  Po=Poi— Poz: (4.113
tral” frequency w. Also, we introduce the secondary coeffi-
cients P=2(p1+P2), P=P1~P2. (4.11b

a=3(a;+ay), B=ay;—a;, v=af (4.4 Analogous definitions are valid for the regular coordinate
pairs Rq,rg) and R,r), introduced, respectively, in the
and source and observation planes. The functiof@land X for
the Markovian media with Gaussian statistics are expressed
through the transverse correlation functidy(r,{,w,) and

As we will see in the following, the value o¢f] is a naturally ?;rfsf?:igglnnsg irqtéc;ligeéit\l/r;tlwf(r,g,w,ﬂ) (see Refl26]

arising parameter that can serve as a measure of frequency

separation. Note thatis negative for normal dispersion and k2 L

positive in _the case of anomalous dispersion. E(w,Q)=ex;< - Zf d[[ ane(O,g,wl,O)
Now, using the identity 0

m=1Uas, n=laja, 7,=1lds. 4.5

Hax)=a 8%, >0, (4.6 —27PAL0,£,0,0)+ 13AL0,£,0,,0],
valid for anym-dimensional vectok, we present the propa- 4.12
gatorsg,, in the form '
k? (L
Gup(Tn 2T on 1 Z0) XIw() w9 ]= 7727 JO d{HA(r({),{ 0,Q),
L 4.13
:a;mJ' DVn(§)5< pOn_pn"'f dgvn(g))
0 where
H k Ld 2 { {
xexp iy | AL vi(0) (O=rwOMD) L=t e | devio)+ [ “dewio).
. ; (4.14
Tante r0n+anj0d§vn(§),§,wn) } Since the double path integral entering E4.10 can be

considered as a version of the general represent&8ic,
4.7) the two-step procedure described in Sec. Ill can now be ap-
plied to its evaluation. In the first step, we construct the trial
action X[ v({)] by replacingr(¢) in the functional(4.14)

Pon=Ton/@n, Pn=Tnlay,. (4.8 with

where the “normalized” coordinatgs,, andp, are given by

- . . ¢
Then, substituting the propagatags into Eg. (4.1), intro- rt(g’)Ert[V(g“),Z]:roﬂLaf dev(o). (4.15
ducing the Wigner-type paths 0

W) =Ly (O)+Vva(D)], V() =Vi(0)—Va(E), (4.9 This choice is inspired by the fact that for the degenerate
case of coinciding frequencies we hag@e- 0, the functional
and performing ensemble averaging, we arrive at the expre${(¢) does not depend ow({), and the corresponding path
sion integral is solvablg22]. For different but rather close fre-
quencies, the functional {) does depend on the trajectories
_ w({) but their contribution is of much less significance as
[(w,Q)= ﬂm:(‘”'ﬂ)f DW(é)f Dv({) compared with that o¥(¢).
Now, in Eqg.(4.10, we expand theS function containing

%S w({) as

L
Po— P+ ,fo d§W(§))

L
5( PO_P—’_I d{W({))
X 8 0

L
Po— P+ fo dgV(f))

L =(2w)*mf duexdiu-(P—Pp)]
Xexp{ikfo dZw(?)-v({)

L
xexp{ = X[w({),v(§) 1}, (4.10 XeXP(_'U'fO dé“W(§)>, (4.19

in which we have defined the sum and difference coordinateand the trial coherence function becomes
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- _ _ By calculating also the integrals ove{) andu, in the latter
['(w,Q)=(27) mﬂmﬂ(w,ﬂ)f duexdiu-(P—Po)] case using Eq(4.6), we arrive at

L I(w,Q)=kR27L)"p"Z(w,Q

Xf Dv(é)é(po—p+fod§v(§)> o) =z )k” ()
XeXr<iE(P—PO)-(p—p0))
Xexp[—xt[v(é)]}f Dw(¢) e
Xexr{—nzj JO d§He(Q(§).§,w,Q)),

Xexp(ikJOLd§W(§)~[v(§)—u/k]>. (4.17 420

By using the definition of theS functional[22], where

L
5[V(§)]=f DW(Z)GXP(ika d§W(§)~V(§)), a(d)=ro+a(/L)(p—Po). (4.21)

(4.18 Note that for the degenerate one-frequency case we obtain
the exact resulf22] since in this case the trial action used
coincides with the actual action functional.

At the second stage of the integration procedure, we con-

Tt(w,ﬂ)z(zﬂ)fmnma(w,ﬂ)f duexdiu-(P—Py)] struct a cumulant representation of the form

we integrate in Eq(4.17) overw({), which leads to

XJ Dv(§)5< Po— P+ fOLdgv(g)) INw,Q)=T{(w,Q)exgd — x(w,Q)], (4.22

where y(w, ) is a standard cumulant serigs. Egs.(3.9)].
X S v({) —ulk]exp — X [v({) ]} (4.19  The first cumulant reads

L k? rL L
k10, 0)=p1(0,Q)=7""2E(w,Q)I'; (w,Q)ZfO dzf DW(OJ Dv(g“)b‘( Po—P+ fo dgw(§)>

X6

L ) L
Po—p+ fodgvm)ex;{lkfodzwm-v(z) exp{— X[ V(0)]}

X{H (r[w(£),v(0),z],2,0,Q) = H (r[Vv({),z],z,0,Q)}. (4.23

In order to perform the path integration in E@.23, we replace the transverse structure functibngr) by their spectral
expansions,

Hs(r,z,w,Q):47rf dyl1—expir-9)]P.(sz,0,0). (4.29
This allows us to present the cumulant as a convolution
L
Kl(w,ﬂ)zwkznzf dzJ dsfi(s,z,w,Q)P (s,2,0,Q) (4.25
0

of the power spectrun® (s,z,w,() with a filtering functionf,(s,z,w,}) given by

L L
fl(S,Z,w,Q)=ﬂmE(w,Q)Ffl(w,Q)J DW(é)j DV(§)5( Po—P+ JO d€W(§)>5< Po— P+ JO d§V(§)>

L
XeXF{ikJO dZw({)-v({) |exp{ = X V()] (exfis r{v({),z]} —explis- r{w({),v({),z]}).  (4.26
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The simple trick now is to represent the last exponent in EqHere the factor$ 4, andF,, are defined as

(4.26 as
exp{is-rfw({),v({),z]}

L
=ex+kJ0 dZw(?)- v({)

explis r{v({),z]},
4.27)

where

() =B (z— )9k, (4.28

9(¢) is the Heaviside step function. The path integral then
reduces to the form of Eq4.17), and the same integration

procedure as that applied to the latter equation gives

fi1(s,z,w,Q)=exdis q(z) [{1—exdis Q(z)]F,},

(4.299
k? (L
F1=exp( ~io(2)s = o fo dZ[Ha(£)
—U(Z,é)s,&w,ﬂ)—HJQ(&)@(»ﬂ)]),
(4.29h
where
Q(2)=pB(Z/L)(P—Py) (4.30
and
o(z)=vz(1-2z/L)/k, (4.313
0(21,Z)=v[min(z,,2,) —z1Z,/L]/k.  (4.31b

an:exp{ _iO'(Zn)Sﬁ—iO'(Zl,Zz)Sl'SZ
k? (L
- 7727 fo d{[HA({) —0(z5,0)% {0, 02)

—He(q(Z),Lw,Q)]], (4.33h

and the factolF,, has the form
Fi= ex;{ —i0(21)8:— 21 0(21,2,)8,- S, — 1 0(25) S
Zk2 -
0 fo d{HQ(d) ~0(z1,0)%

_O-(ZZ!é/)SQ!élvwvﬂ)_He(q(é/)lgiwaﬂ)] .

(4.339

The cumulant representatigf.22), together with the expres-
sions forl'(w,Q) and y(w, ), is the main result of this
work. In contrast to the formulas available in the literature,
the solution obtained here is not limited by the strength of
disorder and applies equally well to both dispersive and non-
dispersive media, with arbitrary spectra of inhomogeneities.
It is important that the dependence of even the first cumulant
k1(w,Q) on the medium fluctuations is highly nonlinear,
and has nothing in common with the quadratic approxima-
tion of the transverse structure function.

Analogous calculations performed with the second cumu-

lant yield
Kko(0,Q)=po(,0)— ui(0,Q)

L L
=772k4774f dzlf dZZJ ds,
0 0

X f dSZ[fZ(S]_aSz,Zl,Zz,w,Q)

- fl(sl1Zlvw19)fl(521221w19)]
X(DE(Slvzlvaﬂ)q)s(SZ1221(1)19):

(4.32
where the filtering functiorf, is given by
fa(s1,5,21,25,0,)

=exdis;-q(zy) +is-q(z)]
X{1—exdis; - Q(zy) JFi—exdis- Q(z,)]F2,
+exfis;- Q(z) +is Q(z)JF 12} - (4.333

V. ANALYSIS

As will be shown in the next section, the contribution of
the second cumulant to the value pfw,() is rather small
as compared with that of the first one. Therefore, in the fol-
lowing we will restrict ourselves to the approximation
x(0,0)~k(w,Q), although more exact calculations in-
cluding the second or even higher cumulants can be per-
formed. To simplify the analysis, we will focus on the case of
zero spatial separation in both source and observation planes,
ron=0 and r,=0. Then, the trial coherence function be-
comes

T(w,Q)=k27L)"p"E(w,Q). (5.0

Being determined by the integral paramete(0), the func-
tion I';(w,Q) depends significantly on the behavior of the
spectrum at small spatial frequencies. In the case of fractal
media,l";(w,(}) accounts for the optical path length varia-
tions and, as a result, contributes entirely to the fluctuations
in the arrival time of the pulse. The second factor entering
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Eq. (4.22), exd — x(w,Q)], is much less sensitive to the low- Which separates inertial and viscous intervals of the turbulent

frequency behavior of the spectrum, and determines the digpectrum(27]. If the condition

tortions of the transient signal due to its scattering in a ran-

dom medium. Therefore, we will concentrate on the analysis |v|<k|§/L (5.4

of the latter factor, setting hereaft€f(w,2)=1. Thus, the

real part of the cumulant series defines the absolute value %f . o .

the coherence function, Re=In|T’|, while the imaginary part olds, for all frequencies contributing significantly to the
) ’ ’ value of the integral in Eq(5.3), we have

corresponds to its phase, le=argl’.

Also, we will consider a random medium that is charac-

terized by isotropic scattering in the transverse plane and is lo(z,0)[s<l,. (5.9
statistically homogeneous along the longitudinal coordinate.
In this case Eqs4.25 and(4.29 are transformed to Physically, this means that the spatial separation of the dif-

fracted rays for two waves with different frequencies is
L o . .
o 212 2 smaller than the inner scale of the medium. For such an
x(@,Q)=2mK"y JO dZJO ds si(s,2,0,0)P(s,0,0), argument, the exact structure functidp(r) can be replaced
(5.2) by the first term of its series expansion,

. 1 1
f(s,z,0,Q0)= 1—exp( —io(2)s? H.(r)= EH;’(O)rZJr ZH<;‘>(0)r4+--- . (5.6
k? (L . .
— ”ZTJ d¢H(0(2,0)s8,0,Q)|. Note that odd terms in the latter equation are absent due to
0

the symmetry of the function. As a result, we obtain

(5.3
f(s,z,0,Q)=1—exd —io(2)s’— p%(2)s*], (5.7

The physical meaning of Eq¢5.2) and (5.3) is fairly trans-
parent: the frequency separation of two different waves i§N
converted into a spatial separation of the corresponding rays
due to the effect of diffraction on the inhomogeneities of the .
medium. A very important feature is the dependence of this 200 = 2 20 2E_ 2 2
spatial separation on the spatial frequency of the disorder. p (Z)_48V 7 H{00, L2542/l =Z7IL5),
The higher the frequency ighe smaller the spatial scaline (5.9
larger the separation of the diffracted rays. Also, the form of
the fllterlng fUnCtion(S.s) suggests a Simple classification of and has the meaning of a frequency_dependent coherence
the propagation regimes. As can be seen, the critical paramgadius.
eter here is the distance of propagatioror relativelyshort To exemplify the result we will consider here a simple but
distances(in the regime of ratheweak scatteringthe first  rather general and practically interesting model, which is
term in the exponent dominates, and the correlation of tW@haracterized by a power spectrum of the form
signals with different frequencies is determined by the trans-
verse size of the first Fresnel zond,/k, and the frequency _ 2. o —p2 2, 2
separationv. It is worth noting that for a time-harmonic P (5,0,0)=C(p,w,Q)(so+5%) " exp —s/sy),
wave propagating in a turbulent medium, both weak and
strong intensity fluctuations can be observed in this regime.
For long distancegthe regime ofstrong scatterinythe first ~ whereC(p,w,{}) is a parameter defining the strength of dis-
term in the exponent is smaller than the second one, and tharder, taking into account also the dispersive properties of
spectral filtering depends essentially on the behavior of théhe medium and including the normalization constant, sind
structure functiorH, . In this regime, the intensity fluctua- ands, are inversely proportional to the innég,, and outer,
tions of a time-harmonic wave are well saturated. A compleLl, scales, respectively. In particular, the cpsell/3 cor-
mentary point of view for the classification of propagationresponds to a Kolmogorov turbulent spectrum modified in
regimes will be discussed in Sec. VI. the regions of both small and large scales, and the val@ of

Although the integration in Eqg5.2) and (5.3) may be is proportional to the structure parameter of the turbulence,
carried out numerically, in some practically important situa-Ci. Apart from continuous media, the general form of the
tions the filtering function can be simplified further. In fact, spectrum(5.9) is capable of modeling also the cumulative
although the integration oves in Eq. (5.2) is performed effect of rather large discrete scatterers, such as hydromete-
formally up to infinity, for any real random medium there ors(rain, fog, etc) in the troposphere, which scatter the light
exists an upper cutoff frequensy, above which the spec- predominantly in the forward direction and may cause an
trum ® (s) quickly decays. The spatial frequensy, is de-  essential delay time and broadening of rather short optical
termined by the lowest scale of the disorder. In a turbulenaind millimeter-wave pulsedl].
medium, for example, this is the so-called inner sdale Substituting Eqs(5.7) and(5.9) into Eq. (5.2 leads to

here the parametgi(z) is defined as

(5.9
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x(©,Q)=27°C(p,w,Q) 7°k? shape of the transient signal propagating in a random me-
) dium. However, the final solutiofl (r,z,t)) in some cases

-p 2] a2 contains more information than is actually needed. If we are

% fo dz % [¥(3.2=p/2isg/ i) interested in finding only the integral parameters of the wave

packet, such as the mean arrival time or pulse width, the
—W(1,2- pl2;s§/sy+io(2)s§+ pX(2)sp)], evolution of transient waves can be described easily by tem-
(5.10 poral moments, a technique commonly used in quantum me-
chanics, and adopted in Rdfl4] for random propagation
where ¥ (a,b;z) is the Tricomi hypergeometric function. A problems.
simple asymptotic analysis of this result shows that for frac- The temporal moments of the transient field are intro-
tal spectra, such as Kolmogorov turbulence, the effect ofluced as
both inner and outer scales may be significant even when the
inertial interval is rather wide. However, to complete the tn(r,z)=fw dt (I (r,z,1)). 6.1)
analytical evaluations we will not consider this effect, as- o
suming that the value gb satisfies the condition 3p<4

andsy—0, s,—. This gives We suppose that the intensity is normalized to satisfy the
) . condition ty(r,z)=1 imposed on the total energy of the
X(0,Q)=47(p—=2) T (2-p/2) pulse. The first momert(r,z) is associated with the mean

arrival time,

L
21,2 H 2 /2—1
*Clp.w. ) nk fo dZio(2)+p ()] 7(r,2)=t4(r,2) — t4(r,0), 6.2

(5.19 and the second momety(r,z) defines the pulse width,
whereI'(z) is the gamma function. In the regime of weak

2 - 2
scattering we obtain we(r,2)=ty(r,2) — t3(r,2). (6.3
x(@,Q)=p[sin(pm/4)T(p)] T?(p/2) After some manipulations it can be fouht¥] that
X B3P0, Q) (i)t (512 oot f o
tn(r2)=(~1)"5— | do—ay

where the dimensionless parameter
X[®(z,0, M) (r,2,0,Q)]0-0- (6.9

Bi(p,0,Q) =47 p(p—2)] " sin(pm/4)
3o/ o2 According to Eq.(6.4), the temporal moments of the pulse
XT'(2=p/2)C(p,w, Q)k*"PELP are given by derivatives of the bilinear spectrdmand the
(5.13  two-frequency coherence functidi both calculated af)
=0. For rather narrowband signals, where the coherence
is a normalized variance of intensity fluctuations evaluated irffunction I' and its derivatives do not change significantly
the framework of the Rytov approximatid@7]. The natural  within the effective frequency band, E¢.4) may be sim-
scaling is provided by the value of??~1. In terms of this  plified. In particular, the mean arrival time and the pulse
parameter, the magnitude of the coherence function exponemidth are given by
tially decays, accompanied by a linear phase accumulation.

For the Kolmogorov turbulencp=11/3 taken as a specific (r,2)=10(r,2) +ix'(r,z,w,0), (6.9
example, we have-InT'~+*%. This scaling is in excellent , ,
agreement with the results obtained by solving the differen- w4(r,z)=wy(r,2)+ x"(r,z,0,0), (6.6

tial equation for the coherence function numericaige Ref. o
[1)). As follows from Eq.(5.11), in the regime of strong Wherero(r,z) andw(r,z) are the mean arrival time and the
scattering, which has not been covered in the previous studhulse width for the wave propagating in a homogeneous me-
ies, the coherence function becomes purely real and is chagium. Analogously, any othethigh-ordef temporal moment
acterized by the relatior In T~ 3. can be calculated, with a corresponding increase of algebraic
When the inequality5.4) is not satisfied, the behavior of complexity being the only limitation. The main advantage of
the filtering function is not universal and depends essentiallyvorking W'Fh temporal moments is now clearly seen, since
on the exact form of the power spectrum. A unified scaling,the evaluation of temporal moments may be performed ana-
however, can be predicted for the temporal moments charadytically. Indeed, there is no need to calculate the function
terizing the evolution of pulsed waves in random media. I'(w,() itself, and it is sufficient to find only its first deriva-
tives taken at)=0. To obtain the exact analytical expres-
V1. APPLICATION TO PULSE PROPAGATION sions for thenth temporal moment we have to calculate the
corresponding number of cumulants. In particular, perform-
Having at hand the expression for the mutual coherencéng appropriate calculations for a nondispersive medium by
function, and using Eq(2.4), we can evaluate the mean using the first cumulant, we have
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1 random media with a regular refraction profile, as is impor-
7(r,z)=7o(r,z) + ﬁHZ(O)Lzlc- (6.7 tant, e.g., for high-frequency wave propagation in an inho-
mogeneous ionosphere.
The contribution of the second cumulant to this temporal Two different regimes of propagation have been found.
moment is exactly zero. To calculate the pulse width we hav&or the regime of relatively weak scatterifgy rather short

to account for the first two cumulants. The result is propagation distancgshe analytical expressions obtained
are in excellent agreement with known numerical results. In

5 o, 1 @ 3122 this regime the description of the coherence function by only
W(r,2)=wg(r,2) + 725H 7 (0)[LY ke the first cumulant is very accurate. In many situatioas,
e.g., for laser pulses of picosecond or femtosecond duration
1 A )
L o 472 propagating in a turbulent atmosphetlee regime of strong
+ 480[Hf(0)] L%/c. (6.8 scattering never sets in for real distances, and therefore the

weak scattering approximation based on the first cumulant
Here, the first term, which is proportional t&*, originates  provides an essentially exact picture. At the same time, there
from the first cumulant and corresponds to the regime otre many applicationuch as, e.g., optical beams transmit-
weak scatteringor relatively short propagation distanges ted through forward scattering particulate medignen the
The second term, witl.* behavior, corresponds to the re- regime of strong scattering can occur. In this regime, which
gime of strong scatteringlarge distances The coefficient to our knowledge has not been covered earlier, the scaling
1/480 is composed of the term 7/2880 coming from the firstiffers essentially from that for the weak scattering, depend-
cumulant, and the terr 1/2880 related to the second cumu- ing much more strongly on the frequency separation. It is
lant. We can conclude, therefore, that for a valuenvdf,z) shown that in random media with fractal-like correlations,
the relative error of the approximation based on the first cuthe exact behavior of the spectrum at both small and large
mulant is rather small even in the regime of strong scatteringspatial frequencies is important.
Using the cumulant expansion we have considered also
VIl. SUMMARY the temporal moments of a pulsed wave propagating in a
) ) ) random medium. It has been found that the temporal mo-
In this work, the temporal evolution of transient waves nents of the pulse are determined exactly by accounting for
propagating in forward scattering random media has beeg ¢orresponding number of the cumulants entering the ex-
studied. The analysis is performed in the frequency domaimession for the coherence function. In particular, the average
and is based on the solution for the two-frequency mutualine delay of the pulse is determined by the first cumulant,
coherence function. The result obtained for this function may, g4 the pulse width is obtained by accounting for the first
serve as a good example of how the path integral techniqugyo cumulants. In the regime of strong scattering, the ap-
applied to a random propagation problem can give a finahoximation based on the first cumulant overestimates to
expression in a simple form with well-controlled accuracy, some extent the decay rate of the coherence function, and, as
despite the intermediate procedure being rather complicated. resit, predicts an increased broadening of the pulse. Better
In contrast to the formulas available in the literature, theaccuracy for the coherence function is achieved by account-

solution obtained is not limited by the strength of disorderng 150 for the second cumulant, which gives an exact value
and works equally well in both dispersive and nondispersivgyf ine pulse width.

media. Generalization of the expression for the coherence

function to finite-aperture wave beams is straightforward.
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