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Two-frequency mutual coherence function and pulse propagation in random media
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Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
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In this work an analysis of transient wave propagation in forward scattering random media is presented. The
analysis is based on evaluation of the two-frequency mutual coherence function, which is an important quantity
in itself since it provides a measure of the coherence bandwidth. The coherence function is calculated by using
the path integral technique; specifically, by resorting to a cumulant expansion of the path integral. In contrast
to the formulas available in the literature, the solution obtained is not limited by the strength of disorder and
applies equally well to both dispersive and nondispersive media, with arbitrary spectra of inhomogeneities. For
the regime of weak scattering~or relatively short propagation distances! the first cumulant gives an excellent
approximation coinciding with the results obtained earlier in a particular case of the Kolmogorov turbulence by
solving the corresponding differential equation numerically. In the regime of strong scattering~long distances!,
which to our knowledge has not been covered previously, our solution demonstrates a different type of scaling
dependence. It is shown that, even for power spectra with fractal behavior in a wide range of spatial frequen-
cies, the coherence function is very sensitive to fine details of the spectrum at both small and large spatial
scales. Using the cumulant expansion, the temporal moments of the pulsed wave propagating in a random
medium are also considered. It is found that the temporal moments of the pulse are determined exactly by
accounting for a corresponding number of the cumulants. In particular, the average time delay of the pulse is
determined by the first cumulant, and the pulse width is obtained by accounting for the first two cumulants.
Although the consideration of the problem is based on the model of a continuous medium, the results are also
applicable to wave propagation in media containing discrete particles scattering predominantly in the forward
direction.
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I. INTRODUCTION

In this work we study a two-frequency coherence funct
and temporal evolution of transient~pulsed! waves propagat-
ing along directed paths in random media. Along with t
generic significance of the subject in the physics of dis
dered systems where the propagation of both quantum
chanical and classical wave packets is of interest~see, e.g.,
Refs. @1–3#!, there is a variety of applications dealing wi
ultrawideband signals transmitted in a complex environme
In particular, high data rate communication systems at ra
and optical frequencies may be influenced by pulse spre
ing due to the scattering by turbulent inhomogeneities
hydrometeors in the troposphere, and by electronic conc
tration fluctuations in the ionosphere. Moreover, in the la
case, the random scattering is superimposed on the b
ground effect of dispersive spreading. In contrast to the pu
spreading in a homogeneous temporally dispersive med
which may be compensated for in the receiver, the sa
effect caused by spatial dispersion of random media lead
an irreversible degradation of the transmitted signal. Ot
applications, also dealing with randomly scattered sh
pulses, include radars and other remote sensing scheme
derwater acoustics, and the interpretation of signals emi
by extraterrestrial radio sources such as pulsars@1,4,5#.

The basic phenomena of the transient propagation pro
can be studied in the framework of a space-time ray
proach according to which the wave process is considere
terms of wave packets moving along complex space-t
rays, permitting the analysis of wave fields with exponen
1063-651X/2002/65~4!/046617~11!/$20.00 65 0466
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temporal and spatial amplitude variations@6#. However, the
ray technique is limited when studying fine dispersion a
diffraction structures of the wave field, especially in rando
media where many multiple-scattered waves come to the
servation point. In such a case, we should resort to a
stochastic wave equation describing the wave field vary
in both space and time. Another option is to solve the
duced form of the wave equation, written for the tim
harmonic field, and to return to the time-dependent field
using an appropriate Fourier transformation. The lat
method is adopted here to study the transient wave prop
tion in random media. It is worth noting that this indire
procedure is the only possibility in many situations deali
with dispersive media, for which the wave equation in t
time domain is unknown, and the properties of the medi
are described by a dispersion relation presented in the
quency domain. Within the framework of this formalism, th
complete information about transient propagation require
solution for the statistical moments of the wave field at d
ferent frequencies and at different positions@7#. In particular,
to evaluate the average pulse shape one has to know
two-frequency mutual coherence function, which is also
important quantity in itself since it provides a measure of
coherence bandwidth@1#.

As is known, the propagation of directed waves can
described with good accuracy by a parabolic-type wa
equation for the complex amplitude. In the Markov appro
mation, i.e., when the inhomogeneities of the medium
supposed to bed correlated along the direction of wav
propagation, the two-frequency mutual coherence funct
©2002 The American Physical Society17-1
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also satisfies an equation of the same type that was obta
in @8#. Some attempts were made to analyze this equation
using either a rather cumbersome eigenfunction expan
developed for a power-law~fractal! medium @9# or a two-
scale procedure which, in principle, is capable of describ
random media with any given statistics@10#. The latter
method, however, leads to a multiple integral of a high
oscillating function which requires considerable numeri
effort to be applied to complete the analysis of the proble
In both cases the control of the accuracy is an additio
difficulty.

The only known analytic solution of the equation for th
coherence function is based on the approximation of
transverse structure function by a quadratic form@11#. In the
framework of the path integral approach adopted in
work, this result is not surprising because in this case the
a soluble quadratic type Lagrangian, and the path integra
can be performed exactly@12#. The quadratic approximation
however, corresponds to accounting for random tilts of
wave front, while the small-scale perturbations causing
pulse spread are completely neglected. In this case,
broadening of the ensemble-averaged pulse is due entire
the fluctuations in arrival time of the pulse, which remai
unperturbed in each particular realization@13#. Obviously,
such a model cannot be adequate for the description of
nals transmitted through random media, and a more acc
able technique for tackling the problem should be develop
Although a quarter of a century has passed from the time
solution based on a quadratic approximation was obtain
no serious progress in this area seems to have been achi

An important exception that must be mentioned is@14# in
which the temporal evolution of pulsed signals was studi
and the problem of finding the mutual coherence funct
itself was avoided. Indeed, it was realized that for calculat
of temporal moments of the pulse~such as mean arrival tim
and pulse width! it is sufficient to evaluate the derivatives o
the coherence function for zero frequency separation. O
ously, the description of transient signals by a number
temporal moments is sufficient only for pulses of simp
shapes, like, for example, quasimonochromatic wave pac
with Gaussian envelopes. Propagation of transients w
complex spectral content, e.g., frequency modulated or u
wideband, especially in dispersive media, may cause for
tion of signals of very intricate form, and even disintegrati
of the initial signal into pulse trains. In this situation w
should resort to a full description based on the mutual coh
ence function, not its derivatives. Moreover, the cohere
function itself is needed in many cases since it is an ea
measurable quantity and may be used in inverse probl
aimed at characterizing the properties of the scattering
dium.

In this paper we show that the two-frequency mutual
herence function can be evaluated with good accuracy
using a path integral technique supplemented by the Mar
approximation, for any type of fluctuating medium~includ-
ing both dispersive and nondispersive media! and for any
type of the disorder~single correlation scale or fractal me
dia!, as well as for any strength of randomness. Although
model of a continuous medium is considered here, the res
04661
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obtained are also applicable to wave propagation in me
containing discrete particles that scatter predominantly in
forward direction. This possibility arises from the wel
known fact that, under certain conditions, the equation
the mutual coherence function can be reshaped into a t
frequency radiative transfer equation@1,8#.

It should be mentioned that this problem can be cons
ered even in a wider physical framework including oth
formulations, which are similar in form. In fact, the parabo
wave equation used to model the propagation of direc
classical waves coincides with the nonstationary Schro¨dinger
equation that describes the motion of a quantum particle
random time-dependent potential@15–18#. The analog of
time for classical waves is the range coordinate, and the
dom potential corresponds to the spatial fluctuations of
refractive index. Moreover, the imaginary time version of t
Schrödinger equation describes the problem of directed po
mers in a random medium@19#. When, in addition, the po-
tential is also imaginary, then the model is relevant to qu
tum tunneling of a strongly localized electron under
random barrier@20#.

The outline of the paper is as follows. In Sec. II, th
general relation between the mean shape of the trans
wave and the two-frequency mutual coherence function
presented. Then, in Sec. III, the path integral appro
adopted in this work and the cumulant technique used for
evaluation of the path integrals are described. In Sec. IV,
path integral technique is applied to the calculation of
coherence function for a dispersive medium with a homo
neous background. In Sec. V, the results obtained are
lyzed and exemplified by considering the particular case o
generalized Kolmogorov turbulence. In Sec. VI the relatio
between temporal characteristics of the pulsed waves and
two-frequency mutual coherence function are introduc
For the model of a narrowband signal propagating in a n
dispersive medium, both the mean arrival time and the pu
width are calculated. The final section contains a summ
and some concluding remarks.

II. TEMPORAL EVOLUTION OF TRANSIENT WAVES

To study the temporal evolution of transient waves in ra
dom media, we consider the time-dependent fieldc(r ,z,t),
which can be presented as a superposition of time-harm
wavesUv(r ,z) satisfying the reduced Helmholtz equatio
Here thez axis is chosen along the direction of wave prop
gation, andr is the coordinate in the transverse plane. In t
paraxial approximation the fieldUv(r ,z) is presented as

Uv~r ,z!5exp@ ik~v!z#uv~r ,z!, ~2.1!

where the wave numberk(v) describes the spectral prope
ties of the unperturbed background medium, and the co
plex amplitudeuv(r ,z) is governed by the standard par
bolic wave equation containing a random perturbation of
scattering potential@1#. Thus, the time-dependent field ha
the form
7-2
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TWO-FREQUENCY MUTUAL COHERENCE FUNCTION AND . . . PHYSICAL REVIEW E65 046617
c~r ,z,t !5
1

2p E
2`

`

dv exp@2 ivt1 ik~v!z#

3uv~r ,z!S~v!, ~2.2!

whereS(v) is the spectrum of the excited pulse.
When dealing with wave propagation in random med

we are interested in finding the statistical moments of
signal intensity,

^I n~r ,z,t !&[^uc~r ,z,t !u2n&, n51,2, . . . ~2.3!

~the angular brackets denote ensemble averaging!. In particu-
lar, the first (n51) intensity moment characterizing a me
shape of the pulse is of major interest@1#. Using Eq.~2.2!,
we obtain for the mean intensity

^I ~r ,z,t !&5
1

4p2 E
2`

`

dvE
2`

`

dV exp~2 iVt !

3F~z,v,V!G~r ,z,v,V!, ~2.4!

where

F~z,v,V!5exp@ ik~v1V/2!z2 ik~v2V/2!z#

3S~v1V/2!S* ~v2V/2! ~2.5!

is the bilinear spectrum of the transient plane wave pro
gating in a homogeneous medium and measured at a dist
z from the source, and the correlator

G~r ,z,v,V!5^uv1V/2~r ,z!uv2V/2* ~r ,z!& ~2.6!

is the mutual two-frequency coherence function. Accord
to Eq. ~2.4!, the mean shape of a wave packet is determi
by two factors. The first, the bilinear spectrumF(z,v,V),
accounts for the distortion of a transient plane wave pro
gating in a dispersive medium. The study of this effect i
classic topic of textbooks treating the propagation of pul
waves in dispersive media. The second factor, the t
frequency mutual coherence functionG(r ,z,v,V), describes
the scattering of the wave on random inhomogeneities
effect depending essentially on the frequency, due to both
temporal and spatial dispersion of the medium. In rand
media, the second effect can dominate and provide the m
contribution to the pulse spread.

The important question that should be discussed and
been just mentioned casually in Sec. I is how the shape o
pulse averaged over the ensemble is related to the shap
the pulse in an arbitrarily taken realization. In random me
with only one correlation scale~such as atmospheric hy
drometeors! there is essentially no difference between the
two values, i.e., the pulse shape obtained by performing
semble averaging coincides with that observed in each
ticular realization. In media with fractal spectra~such as Kol-
mogorov turbulence! there are two mechanisms that cau
broadening of the ensemble-averaged pulse: the pulse
be spread in time as a result of multiple scattering for e
realization of the ensemble, and it can also spread in tim
a result of averaging over fluctuations in the arrival time
04661
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different realizations@13#. However, the latter effect is sig
nificant under the conditions of extremely weak scatter
~in the regime of weak intensity fluctuations!, and is de-
scribed mainly by a separable factor which will be delibe
ately ignored in our analysis.

III. PATH INTEGRAL APPROACH

We start with the parabolic equation for the Green’s fun
tion,

2ik~v!]zgv1¹ r
2gv

1k2~v!ẽ~r ,z,v!gv~r ,zur0 ,z0!50, ~3.1a!

supplemented by the initial condition

gv~r ,z0ur0 ,z0!5d~r2r0!. ~3.1b!

It is assumed that the fluctuating parameter~permittivity, or
scattering potential! ẽ(r ,z,v) is a Gaussian random fiel
with zero mean value,̂ẽ(r ,z,v)&50, i.e., the medium is
characterized by a homogeneous background.

The parabolic equation~3.1! coincides with the nonsta
tionary Schro¨dinger equation that describes the motion o
quantum particle in a random time-dependent potential.
ing this analogy, the solution of the equation can be p
sented in the Feynman path integral form:

gv~r ,zur0 ,z0!5E
r ~z0!5r 0

r ~z!5r
Dr ~z!expS i

k~v!

2 E
z0

z

dz$ ṙ2~z!

1 ẽ@r ~z!,z,v#% D , ~3.2!

where the integration*Dr (z) in the continuum of possible
trajectories is interpreted as the sum of contributions of a
trary paths over which a wave propagates from pointr0 at
the ‘‘moment’’ z0 to point r at z, and the expression in th
exponent may be considered as an ‘‘action functional’’ wh
is related to the phase accumulated along the correspon
path @21,22#.

By changing the ‘‘integration variable’’

r ~z!5r01E
z0

z

dz v~z!, ~3.3!

we turn to the so-called velocity representation, which c
simplify analytical transformations of the path integral@22#.
In this casev(z)5 ṙ (z), and in two dimensions the new in
tegration variable can be related to some velocity that
plains the name of this representation. According to E
~3.3!, the conditionr (z0)5r0 is satisfied automatically. The
second end restriction for each trajectory can be specified
a d function in the integrand. This leads to
7-3
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gv~r ,zur0 ,z0!5E Dv~z!dS r2r02E
z0

z

dz v~z! D
3expH i

k~v!

2 E
z0

z

dzFv2~z!

1 ẽS r01E
z0

z

dz v~z!,z,v D G J . ~3.4!

Using the path integral representation, in the form of eit
Eq. ~3.2! or ~3.4!, we can write down any statistical mome
of the wave field and perform an ensemble averaging p
vided the statistics of the medium is known. The result
expression for anNth-order statistical moment of the field~in
our case this is the second-order two-frequency mutual
herence function! has the generalized form

G5E Dr~z!exp$2X@r~z!#%, ~3.5!

wherer(z) is a set ofN Feynman paths, either in a regul
coordinate space or in the velocity representation, i.e.,r(z)
[$v1(z),...,vN(z)%, and it is assumed also that the end
strictions and the free-space parts of the action function
are included inDr(z). The functionalX@r(z)# in Eq. ~3.5!
reflects the statistics of the medium, and, for instance, in
case of Gaussian fluctuations contains only a combinatio
correlation ~structure! functions of the scattering potentia
ẽ(r ,z,v). The remaining procedure is then to evaluate
path integral~3.5!.

The term ‘‘evaluation’’ is applied to the path integral
the sense that the functional, i.e., infinite-dimensional, in
gral is reduced to some representation~computational algo-
rithm! containing only finite-dimensional, conventional int
grals. As is well known, the path integral may be evalua
exactly only in a very limited number of cases where, a
rule, the solution may be obtained by application of oth
methods@23#. This is true, first of all, for the Gaussian-typ
path integrals, i.e., the functional integrals with a quadra
form Lagrangian. Such integrals may be handled by dir
application of their discretized forms or orthogonal path e
pansions. Another way is to use the method of station
phase which leads to exact results for quadratic Lagrangi
because the Taylor expansion of the corresponding act
terminates after its second derivative. However, in pract
especially in the theory of wave propagation in random m
dia, the path integrals are of a non-Gaussian type, and
solution can be obtained in an approximate form o
@22,24#.

In the present study we will resort to a cumulant tec
nique @25#. The general idea of the cumulant path integ
evaluation is based on the notion of an expectation va
introduced for an arbitrary real-valued functionalU@r(z)#,

^U@r~z!#&X5

E Dr~z!exp$2X@r~z!#%U@r~z!#

E Dr~z!exp$2X@r~z!#%

.

~3.6!
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Obviously, the definition~3.6! satisfies the necessary norma
ization condition^1&X51 ~see Ref.@25#!.

In order to calculate the value ofG defined by Eq.~3.5!,
we first choose a trial actionXt , which on the one hand is
close to the actual actionX, and on the other is solvable, i.e
the value of the integral

G t5E Dr~z!exp$2Xt@r~z!#% ~3.7!

can be obtained analytically. In the second stage, by us
the definition~3.6!, we arrive at the expression

G5G t^exp@2~X2Xt!#&Xt
, ~3.8!

in which the expectation value of the exponent may be
placed formally by the exponent of the series over cor
sponding cumulantskn :

G5G t exp~2x!, x5 (
n51

`
kn

n!
. ~3.9!

The cumulantskn are expressed through the moments

mn5^~X2Xt!
n&Xt

, n51,2, . . . , ~3.10!

by the usual nonlinear relations. A reasonable approxima
can be obtained by terminating the series at the second o
which is allowed if a Gaussian nature is assumed in the
chastic behavior of the perturbation@25#. Under some condi-
tions, the higher cumulants may be neglected, and the se
can be approximated by the first cumulant only:x'k1 .
Obviously, some independent procedure aimed at the ve
cation of the result based on the first cumulant is desira
As such a procedure we use the evaluation of temporal
ments of the pulse and compare the relative contribution
the first two cumulants to the pulse width~see Sec. VI for
details!.

IV. CALCULATIONS

We consider two waves with angular frequenciesv15v
1V/2 and v25v2V/2. Our aim is to evaluate a two
frequency correlator of the form~2.6!, but generalized so tha
the observation points for the two waves are different. S
cifically, we assume that the wave with frequencyvn (n
51,2) is radiated by a point source located atr0n in the
planez050, and measured at the pointrn in the observation
planez5L. To calculate the corresponding propagators
tering the coherence function,

G~v,V!5^gv1
~r1 ,zur01,z0!gv2

* ~r2 ,zur02,z0!&, ~4.1!

we use the velocity representation~3.4! in which the integra-
tion pathsvn(z) are rescaled as

vn~z!→anvn~z!, ~4.2!

where the coefficientsan are given by

an[an~v,V!5Ak~v!/k~vn!, ~4.3!
7-4
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andk[k(v) is the wave number corresponding to the ‘‘ce
tral’’ frequencyv. Also, we introduce the secondary coef
cients

a5 1
2 ~a11a2!, b5a12a2 , n5ab ~4.4!

and

h151/a1
2, h51/a1a2, h251/a2

2. ~4.5!

As we will see in the following, the value ofunu is a naturally
arising parameter that can serve as a measure of frequ
separation. Note thatn is negative for normal dispersion an
positive in the case of anomalous dispersion.

Now, using the identity

d~ax!5a2md~x!, a.0, ~4.6!

valid for anym-dimensional vectorx, we present the propa
gatorsgvn

in the form

gvn
~rn ,zur0n ,z0!

5an
2mE Dvn~z!dS p0n2pn1E

0

L

dz vn~z! D
3expH i

k

2 E0

L

dzFvn
2~z!

1an
22ẽS r0n1anE

0

z

dz vn~z!,z,vnD G J ,

~4.7!

where the ‘‘normalized’’ coordinatesp0n andpn are given by

p0n5r0n /an , pn5rn /an . ~4.8!

Then, substituting the propagatorsgvn
into Eq. ~4.1!, intro-

ducing the Wigner-type paths

w~z!5 1
2 @v1~z!1v2~z!#, v~z!5v1~z!2v2~z!, ~4.9!

and performing ensemble averaging, we arrive at the exp
sion

G~v,V!5hmJ~v,V!E Dw~z!E Dv~z!

3dS P02P1E
0

L

dz w~z! D
3dS p02p1E

0

L

dz v~z! D
3expF ikE

0

L

dz w~z!•v~z!G
3exp$2X@w~z!,v~z!#%, ~4.10!

in which we have defined the sum and difference coordina
04661
cy

s-

s

P05 1
2 ~p011p02!, p05p012p02, ~4.11a!

P5 1
2 ~p11p2!, p5p12p2 . ~4.11b!

Analogous definitions are valid for the regular coordina
pairs (R0 ,r0) and (R,r ), introduced, respectively, in the
source and observation planes. The functionalsJ andX for
the Markovian media with Gaussian statistics are expres
through the transverse correlation functionAe(r ,z,v,V) and
corresponding structure functionHe(r ,z,v,V) ~see Ref.@26#
for definitions!, and are given by

J~v,V!5expS 2
k2

4 E
0

L

dz@h1
2Ae~0,z,v1,0!

22h2Ae~0,z,v,V!1h2
2Ae~0,z,v2,0!# D ,

~4.12!

X@w~z!,v~z!#5h2
k2

4 E
0

L

dz He~r ~z!,z,v,V…,

~4.13!

where

r ~z![r @w~z!,v~z!,z#5r01aE
0

z

dz v~z!1bE
0

z

dz w~z!.

~4.14!

Since the double path integral entering Eq.~4.10! can be
considered as a version of the general representation~3.5!,
the two-step procedure described in Sec. III can now be
plied to its evaluation. In the first step, we construct the tr
action Xt@v(z)# by replacingr (z) in the functional~4.14!
with

r t~z![r t@v~z!,z#5r01aE
0

z

dz v~z!. ~4.15!

This choice is inspired by the fact that for the degener
case of coinciding frequencies we haveb50, the functional
r (z) does not depend onw(z), and the corresponding pat
integral is solvable@22#. For different but rather close fre
quencies, the functionalr (z) does depend on the trajectorie
w(z) but their contribution is of much less significance
compared with that ofv(z).

Now, in Eq. ~4.10!, we expand thed function containing
w(z) as

dS P02P1E
0

L

dz w~z! D
5~2p!2mE du exp@ iu•~P2P0!#

3expS 2 iu•E
0

L

dz w~z! D , ~4.16!

and the trial coherence function becomes
7-5



tain
d

on-

GREGORY SAMELSOHN AND VALENTIN FREILIKHER PHYSICAL REVIEW E65 046617
G t~v,V!5~2p!2mhmJ~v,V!E du exp@ iu•~P2P0!#

3E Dv~z!dS p02p1E
0

L

dz v~z! D
3exp$2Xt@v~z!#%E Dw~z!

3expS ikE
0

L

dz w~z!•@v~z!2u/k# D . ~4.17!

By using the definition of thed functional @22#,

d@v~z!#5E Dw~z!expS ikE
0

L

dz w~z!•v~z! D ,

~4.18!

we integrate in Eq.~4.17! over w(z), which leads to

G t~v,V!5~2p!2mhmJ~v,V!E du exp@ iu•~P2P0!#

3E Dv~z!dS p02p1E
0

L

dz v~z! D
3d@v~z!2u/k#exp$2Xt@v~z!#%. ~4.19!
04661
By calculating also the integrals overv(z) andu, in the latter
case using Eq.~4.6!, we arrive at

G t~v,V!5~k/2pL !mhmJ~v,V!

3expS i
k

L
~P2P0!•~p2p0! D

3expS 2h2
k2

4 E
0

L

dz He„q~z!,z,v,V…D ,

~4.20!

where

q~z!5r01a~z/L !~p2p0!. ~4.21!

Note that for the degenerate one-frequency case we ob
the exact result@22# since in this case the trial action use
coincides with the actual action functional.

At the second stage of the integration procedure, we c
struct a cumulant representation of the form

G~v,V!5G t~v,V!exp@2x~v,V!#, ~4.22!

wherex~v, V! is a standard cumulant series@cf. Eqs.~3.9!#.
The first cumulant reads
k1~v,V![m1~v,V!5hm12J~v,V!G t
21~v,V!

k2

4 E
0

L

dzE Dw~z!E Dv~z!dS P02P1E
0

L

dz w~z! D
3dS p02p1E

0

L

dz v~z! D expF ikE
0

L

dz w~z!•v~z!Gexp$2Xt@v~z!#%

3$He„r @w~z!,v~z!,z#,z,v,V…2He„r t@v~z!,z#,z,v,V…%. ~4.23!

In order to perform the path integration in Eq.~4.23!, we replace the transverse structure functionsHe(r ) by their spectral
expansions,

He~r ,z,v,V!54pE ds@12exp~ i r•s!#Fe~s,z,v,V!. ~4.24!

This allows us to present the cumulantk1 as a convolution

k1~v,V!5pk2h2E
0

L

dzE ds f 1~s,z,v,V!Fe~s,z,v,V! ~4.25!

of the power spectrumFe(s,z,v,V) with a filtering functionf 1(s,z,v,V) given by

f 1~s,z,v,V!5hmJ~v,V!G t
21~v,V!E Dw~z!E Dv~z!dS P02P1E

0

L

dz w~z! D dS p02p1E
0

L

dz v~z! D
3expF ikE

0

L

dz w~z!•v~z!Gexp$2Xt@v~z!#%„exp$ is•r t@v~z!,z#%2exp$ is•r @w~z!,v~z!,z#%…. ~4.26!
7-6
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The simple trick now is to represent the last exponent in
~4.26! as

exp$ is•r @w~z!,v~z!,z#%

5expF ikE
0

L

dz w~z!•y~z!Gexp$ is•r t@v~z!,z#%,

~4.27!

where

y~z!5bq~z2z!s/k, ~4.28!

q~z! is the Heaviside step function. The path integral th
reduces to the form of Eq.~4.17!, and the same integratio
procedure as that applied to the latter equation gives

f 1~s,z,v,V!5exp@ is•q~z!#$12exp@ is•Q~z!#F1% ,
~4.29a!

F15expS 2 is~z!s22h2
k2

4 E
0

L

dz@He„q~z!

2s~z,z!s,z,v,V…2He„q~z!,z,v,V…# D ,

~4.29b!

where

Q~z!5b~z/L !~P2P0! ~4.30!

and

s~z!5nz~12z/L !/k, ~4.31a!

s~z1 ,z2!5n@min~z1 ,z2!2z1z2 /L#/k. ~4.31b!

Analogous calculations performed with the second cum
lant yield

k2~v,V![m2~v,V!2m1
2~v,V!

5p2k4h4E
0

L

dz1E
0

L

dz2E ds1

3E ds2@ f 2~s1 ,s2 ,z1 ,z2 ,v,V!

2 f 1~s1 ,z1 ,v,V! f 1~s2 ,z2 ,v,V!#

3Fe~s1 ,z1 ,v,V!Fe~s2 ,z2 ,v,V!,

~4.32!

where the filtering functionf 2 is given by

f 2~s1 ,s2 ,z1 ,z2 ,v,V!

5exp@ is1•q~z1!1 is2•q~z2!#

3$12exp@ is1•Q~z1!#F112exp@ is2•Q~z2!#F22

1exp@ is1•Q~z1!1 is2•Q~z2!#F12% . ~4.33a!
04661
.

n

-

Here the factorsF11 andF22 are defined as

Fnn5expH 2 is~zn!sn
22 is~z1 ,z2!s1•s2

2h2
k2

4 E
0

L

dz@He„q~z!2s~zn,z!sn ,z,v,V…

2He„q~z!,z,v,V…#J , ~4.33b!

and the factorF12 has the form

F125expS 2 is~z1!s1
222is~z1 ,z2!s1•s22 is~z2!s2

2

2h2
k2

4 E
0

L

dz@He„q~z!2s~z1,z!s1

2s~z2,z!s2 ,z,v,V…2He„q~z!,z,v,V…# D .

~4.33c!

The cumulant representation~4.22!, together with the expres
sions for G t(v,V) and x~v, V!, is the main result of this
work. In contrast to the formulas available in the literatu
the solution obtained here is not limited by the strength
disorder and applies equally well to both dispersive and n
dispersive media, with arbitrary spectra of inhomogeneit
It is important that the dependence of even the first cumu
k1(v,V) on the medium fluctuations is highly nonlinea
and has nothing in common with the quadratic approxim
tion of the transverse structure function.

V. ANALYSIS

As will be shown in the next section, the contribution
the second cumulant to the value ofx(v,V) is rather small
as compared with that of the first one. Therefore, in the f
lowing we will restrict ourselves to the approximatio
x(v,V)'k1(v,V), although more exact calculations in
cluding the second or even higher cumulants can be
formed. To simplify the analysis, we will focus on the case
zero spatial separation in both source and observation pla
r0n50 and rn50. Then, the trial coherence function be
comes

G t~v,V!5~k/2pL !mhmJ~v,V!. ~5.1!

Being determined by the integral parameterAe(0), the func-
tion G t(v,V) depends significantly on the behavior of th
spectrum at small spatial frequencies. In the case of fra
media,G t(v,V) accounts for the optical path length vari
tions and, as a result, contributes entirely to the fluctuati
in the arrival time of the pulse. The second factor enter
7-7
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Eq. ~4.22!, exp@2x(v,V)#, is much less sensitive to the low
frequency behavior of the spectrum, and determines the
tortions of the transient signal due to its scattering in a r
dom medium. Therefore, we will concentrate on the analy
of the latter factor, setting hereafterG t(v,V)51. Thus, the
real part of the cumulant series defines the absolute valu
the coherence function, Rex[lnuGu, while the imaginary part
corresponds to its phase, Imx[argG.

Also, we will consider a random medium that is chara
terized by isotropic scattering in the transverse plane an
statistically homogeneous along the longitudinal coordina
In this case Eqs.~4.25! and ~4.29! are transformed to

x~v,V!52p2k2h2E
0

L

dzE
0

`

ds s f~s,z,v,V!Fe~s,v,V!,

~5.2!

f ~s,z,v,V!512expS 2 is~z!s2

2h2
k2

4 E
0

L

dz He„s~z,z!s,v,V…D .

~5.3!

The physical meaning of Eqs.~5.2! and ~5.3! is fairly trans-
parent: the frequency separation of two different waves
converted into a spatial separation of the corresponding
due to the effect of diffraction on the inhomogeneities of t
medium. A very important feature is the dependence of
spatial separation on the spatial frequency of the disor
The higher the frequency is~the smaller the spatial scale! the
larger the separation of the diffracted rays. Also, the form
the filtering function~5.3! suggests a simple classification
the propagation regimes. As can be seen, the critical par
eter here is the distance of propagationL. For relativelyshort
distances~in the regime of ratherweak scattering! the first
term in the exponent dominates, and the correlation of
signals with different frequencies is determined by the tra
verse size of the first Fresnel zone,AL/k, and the frequency
separationn. It is worth noting that for a time-harmoni
wave propagating in a turbulent medium, both weak a
strong intensity fluctuations can be observed in this regi
For long distances~the regime ofstrong scattering! the first
term in the exponent is smaller than the second one, and
spectral filtering depends essentially on the behavior of
structure functionHe . In this regime, the intensity fluctua
tions of a time-harmonic wave are well saturated. A comp
mentary point of view for the classification of propagati
regimes will be discussed in Sec. VI.

Although the integration in Eqs.~5.2! and ~5.3! may be
carried out numerically, in some practically important situ
tions the filtering function can be simplified further. In fac
although the integration overs in Eq. ~5.2! is performed
formally up to infinity, for any real random medium the
exists an upper cutoff frequencysm above which the spec
trum Fe(s) quickly decays. The spatial frequencysm is de-
termined by the lowest scale of the disorder. In a turbul
medium, for example, this is the so-called inner scalel 0 ,
04661
is-
-

is

of

-
is

e.

is
ys

is
r.

f

m-

o
-

d
e.

he
e

-

-

t

which separates inertial and viscous intervals of the turbu
spectrum@27#. If the condition

unu!kl0
2/L ~5.4!

holds, for all frequenciess contributing significantly to the
value of the integral in Eq.~5.3!, we have

us~z,z!us! l 0 . ~5.5!

Physically, this means that the spatial separation of the
fracted rays for two waves with different frequencies
smaller than the inner scale of the medium. For such
argument, the exact structure functionHe(r ) can be replaced
by the first term of its series expansion,

He~r !5
1

2!
He9~0!r 21

1

4!
He

~4!~0!r 41¯ . ~5.6!

Note that odd terms in the latter equation are absent du
the symmetry of the function. As a result, we obtain

f ~s,z,v,V!512exp@2 is~z!s22r2~z!s2#, ~5.7!

where the parameterr(z) is defined as

r2~z!5
1

48
n2h2He9~0,v,V!Lz2~524z/L2z2/L2!,

~5.8!

and has the meaning of a frequency-dependent coher
radius.

To exemplify the result we will consider here a simple b
rather general and practically interesting model, which
characterized by a power spectrum of the form

Fe~s,v,V!5C~p,v,V!~s0
21s2!2p/2 exp~2s2/sm

2 !,
~5.9!

whereC(p,v,V) is a parameter defining the strength of d
order, taking into account also the dispersive properties
the medium and including the normalization constant, andsm
ands0 are inversely proportional to the inner,l 0 , and outer,
L0 , scales, respectively. In particular, the casep511/3 cor-
responds to a Kolmogorov turbulent spectrum modified
the regions of both small and large scales, and the valueC
is proportional to the structure parameter of the turbulen
Ce

2. Apart from continuous media, the general form of t
spectrum~5.9! is capable of modeling also the cumulativ
effect of rather large discrete scatterers, such as hydrom
ors ~rain, fog, etc.! in the troposphere, which scatter the lig
predominantly in the forward direction and may cause
essential delay time and broadening of rather short opt
and millimeter-wave pulses@1#.

Substituting Eqs.~5.7! and ~5.9! into Eq. ~5.2! leads to
7-8
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x~v,V!52p2C~p,v,V!h2k2

3E
0

L

dz s0
22p@C„1,22p/2;s0

2/sm
2
…

2C„1,22p/2;s0
2/sm

2 1 is~z!s0
21r2~z!s0

2
…#,

~5.10!

whereC(a,b;z) is the Tricomi hypergeometric function. A
simple asymptotic analysis of this result shows that for fr
tal spectra, such as Kolmogorov turbulence, the effect
both inner and outer scales may be significant even when
inertial interval is rather wide. However, to complete t
analytical evaluations we will not consider this effect, a
suming that the value ofp satisfies the condition 3,p,4
ands0→0, sm→`. This gives

x~v,V!54p2~p22!21G~22p/2!

3C~p,v,V!h2k2E
0

L

dz@ is~z!1r2~z!#p/221,

~5.11!

whereG(z) is the gamma function. In the regime of wea
scattering we obtain

x~v,V!5p@sin~pp/4!G~p!#21G2~p/2!

3b0
2~p,v,V!h2~ in!p/221, ~5.12!

where the dimensionless parameter

b0
2~p,v,V!54p2@p~p22!#21 sin~pp/4!

3G~22p/2!C~p,v,V!k32p/2Lp/2

~5.13!

is a normalized variance of intensity fluctuations evaluated
the framework of the Rytov approximation@27#. The natural
scaling is provided by the value ofn p/221. In terms of this
parameter, the magnitude of the coherence function expo
tially decays, accompanied by a linear phase accumula
For the Kolmogorov turbulencep511/3 taken as a specifi
example, we have2 ln G;n5/6. This scaling is in excellen
agreement with the results obtained by solving the differ
tial equation for the coherence function numerically~see Ref.
@1#!. As follows from Eq. ~5.11!, in the regime of strong
scattering, which has not been covered in the previous s
ies, the coherence function becomes purely real and is c
acterized by the relation2 ln G;n 5/3.

When the inequality~5.4! is not satisfied, the behavior o
the filtering function is not universal and depends essenti
on the exact form of the power spectrum. A unified scali
however, can be predicted for the temporal moments cha
terizing the evolution of pulsed waves in random media.

VI. APPLICATION TO PULSE PROPAGATION

Having at hand the expression for the mutual cohere
function, and using Eq.~2.4!, we can evaluate the mea
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shape of the transient signal propagating in a random
dium. However, the final solution̂I (r ,z,t)& in some cases
contains more information than is actually needed. If we
interested in finding only the integral parameters of the wa
packet, such as the mean arrival time or pulse width,
evolution of transient waves can be described easily by t
poral moments, a technique commonly used in quantum
chanics, and adopted in Ref.@14# for random propagation
problems.

The temporal moments of the transient field are int
duced as

tn~r ,z!5E
2`

`

dt tn^I ~r ,z,t !&. ~6.1!

We suppose that the intensity is normalized to satisfy
condition t0(r ,z)51 imposed on the total energy of th
pulse. The first momentt1(r ,z) is associated with the mea
arrival time,

t~r ,z!5t1~r ,z!2t1~r ,0!, ~6.2!

and the second momentt2(r ,z) defines the pulse width,

w2~r ,z!5t2~r ,z!2t1
2~r ,z!. ~6.3!

After some manipulations it can be found@14# that

tn~r ,z!5~2 i !n
1

2p E
2`

`

dv
]n

]Vn

3@F~z,v,V!G~r ,z,v,V!#V50 . ~6.4!

According to Eq.~6.4!, the temporal moments of the puls
are given by derivatives of the bilinear spectrumF and the
two-frequency coherence functionG, both calculated atV
50. For rather narrowband signals, where the cohere
function G and its derivatives do not change significan
within the effective frequency band, Eq.~6.4! may be sim-
plified. In particular, the mean arrival time and the pul
width are given by

t~r ,z!5t0~r ,z!1 ix8~r ,z,v,0!, ~6.5!

w2~r ,z!5w0
2~r ,z!1x9~r ,z,v,0!, ~6.6!

wheret0(r ,z) andw0(r ,z) are the mean arrival time and th
pulse width for the wave propagating in a homogeneous
dium. Analogously, any other~high-order! temporal moment
can be calculated, with a corresponding increase of algeb
complexity being the only limitation. The main advantage
working with temporal moments is now clearly seen, sin
the evaluation of temporal moments may be performed a
lytically. Indeed, there is no need to calculate the funct
G(v,V) itself, and it is sufficient to find only its first deriva
tives taken atV50. To obtain the exact analytical expre
sions for thenth temporal moment we have to calculate t
corresponding number of cumulants. In particular, perfor
ing appropriate calculations for a nondispersive medium
using the first cumulant, we have
7-9
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t~r ,z!5t0~r ,z!1
1

24
He9~0!L2/c. ~6.7!

The contribution of the second cumulant to this tempo
moment is exactly zero. To calculate the pulse width we h
to account for the first two cumulants. The result is

w2~r ,z!5w0
2~r ,z!1

1

180
uHe

~4!~0!uL3/k2c2

1
1

480
@He9~0!#2L4/c2. ~6.8!

Here, the first term, which is proportional toL3, originates
from the first cumulant and corresponds to the regime
weak scattering~or relatively short propagation distances!.
The second term, withL4 behavior, corresponds to the re
gime of strong scattering~large distances!. The coefficient
1/480 is composed of the term 7/2880 coming from the fi
cumulant, and the term21/2880 related to the second cum
lant. We can conclude, therefore, that for a value ofw(r ,z)
the relative error of the approximation based on the first
mulant is rather small even in the regime of strong scatter

VII. SUMMARY

In this work, the temporal evolution of transient wav
propagating in forward scattering random media has b
studied. The analysis is performed in the frequency dom
and is based on the solution for the two-frequency mut
coherence function. The result obtained for this function m
serve as a good example of how the path integral techn
applied to a random propagation problem can give a fi
expression in a simple form with well-controlled accurac
despite the intermediate procedure being rather complica
In contrast to the formulas available in the literature, t
solution obtained is not limited by the strength of disord
and works equally well in both dispersive and nondispers
media. Generalization of the expression for the cohere
function to finite-aperture wave beams is straightforwa
The dependence of the spectrumFe on the longitudinal co-
ordinate and anisotropic scattering in the transverse p
can be accounted for in the calculations for particular ap
cations. In principle, the results can be generalized also
e

om
,

d
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random media with a regular refraction profile, as is imp
tant, e.g., for high-frequency wave propagation in an inh
mogeneous ionosphere.

Two different regimes of propagation have been foun
For the regime of relatively weak scattering~or rather short
propagation distances! the analytical expressions obtaine
are in excellent agreement with known numerical results
this regime the description of the coherence function by o
the first cumulant is very accurate. In many situations~as,
e.g., for laser pulses of picosecond or femtosecond dura
propagating in a turbulent atmosphere! the regime of strong
scattering never sets in for real distances, and therefore
weak scattering approximation based on the first cumu
provides an essentially exact picture. At the same time, th
are many applications~such as, e.g., optical beams transm
ted through forward scattering particulate media! when the
regime of strong scattering can occur. In this regime, wh
to our knowledge has not been covered earlier, the sca
differs essentially from that for the weak scattering, depe
ing much more strongly on the frequency separation. It
shown that in random media with fractal-like correlation
the exact behavior of the spectrum at both small and la
spatial frequencies is important.

Using the cumulant expansion we have considered a
the temporal moments of a pulsed wave propagating i
random medium. It has been found that the temporal m
ments of the pulse are determined exactly by accounting
a corresponding number of the cumulants entering the
pression for the coherence function. In particular, the aver
time delay of the pulse is determined by the first cumula
and the pulse width is obtained by accounting for the fi
two cumulants. In the regime of strong scattering, the
proximation based on the first cumulant overestimates
some extent the decay rate of the coherence function, an
a result, predicts an increased broadening of the pulse. B
accuracy for the coherence function is achieved by acco
ing also for the second cumulant, which gives an exact va
of the pulse width.
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